Q	Working	Answer	Mark	Notes
1	20 - 5x (= 7 - 3x)		3	M1 for expansion of bracket
	E.g. $20 - 7 = -3x + 5x$ or -5x + 3x = 7 - 20			M1 ft from a 4-term equation for a correct process of isolating terms in <i>x</i> on one side of the equation and numbers on the other side
		6.5 oe		A1 dep on M1 awarded and from correct working

2	x -2 -1 0 1 2 3	Correct line between	3	B3	for a correct line between
	y 15 11 7 3 -1 -5	x = -2			x = -2 and $x = 3$
		and			
		x = 3			(B2 for a correct straight line segment through at
					least 3 of $(-2, 15)(-1, 11)(0, 7)(1, 3)(2, -1)$
	(-2, 15)(-1, 11)(0, 7)(1, 3)				(3, -5)
	(2, -1)(3, -5)				
					or
					for all of $(-2, 15)(-1, 11)(0, 7)(1, 3)(2, -1)$ (3, -5) plotted but not ioined)
					5) proteed but not jointed)
					(B1 for at least 2 correct points stated (may be in a
					table) or plotted or for a line drawn with a negative
					gradient through $(0, 7)$ or for a line with a gradient
					of -4)
					Total 3 marks

Practice Tests Set 14 -	 Paper 1H mark scheme, 	performance data and s	suggested c	arade boundaries

Q	Working	Answer		Mark	Notes
3 a		g^{10}	1	E	1
b		k^7	1	E	1
c		$9c^{2}d^{8}$	2	E	B1 for 2 out of 3 terms correct in a
					product

Q	Wa	Working			Mark	Notes	
Q 4	Weights Elimination E.g. $21x - 6y = 102$ $21x + 35y = -21$ $(-41y = 123)$ or $35x - 10y = 170$	Substitution E.g. $3\left(\frac{34+2y}{7}\right)+5y=-3$ or $3x+5\left(\frac{7x-34}{2}\right)=-3$ or	Answer	4	Mark M1	Notes for a correct method to eliminate x or y: coefficients of x or y the same and correct operation to eliminate selected variable (condone 1 arithmetical error) or for correctly writing x or y in terms of the other variable and correctly substituting	
	6x + 10y = -6 $(41x = 164)$	$7\left(\frac{-3-5y}{3}\right) - 2y = 34$ or $7x - 2\left(\frac{-3-3x}{5}\right) = 34$					
					A1	dep on M1 for $x = 4$ or $y = -3$	
	E.g. $7x - 2 \times -3 = 34$				M1	dep on M1 for substitution of found variableorrepeating the steps in first M1 for the second variable	
			x = 4 y = -3		A1	cao A correct answer without working scores no marks	
						Total 4 marks	

Q	Working	Answe	Answer N		Notes
5	4x > 2 - 7 oe			М	1 accept as an equation or with wrong inequality sign.
		x > -1.25	2	А	1 oe allow $(-1.25, (+)\infty)$
					Note: award M1A0 for an answer on the answer line of -1.25 with no sign or the incorrect sign eg $x = -1.25$, x < -1.25
					Total 2 marks
6			-	M1 for eg	y = 3x + c oe or $y = mx - 2$ oe or $3x - 2$ or $L = 3x - 2$ or $y = 3(x \pm a)$
		y = 3x - 2	2	A1 oe e	eg $y-4 = 3(x-2)$ y-1 = 3(x-1) y-a = 3(x-b) where (a, b) is any coordinate on the line
					Total 2 marks
				•	
7 (a)		2, 4, 6, 12	2	1	B1
(c)				2	M1 for $\frac{a}{14}$ with $a < 14$ or $\frac{3}{b}$ with $b > 3$ or
					for 3 and 14 used with incorrect notation e.g. 3 : 14
		$\frac{3}{14}$			A1 for $\frac{3}{14}$ oe or 0.214()
					Total 3 marks

Q	Working	Answer	Mark	Notes
		•		
8 (a)		$\frac{2}{5}, \frac{3}{5}$ oe	2	B1 correct probabilities for spinner A
		$\frac{4}{5}, \frac{1}{5}, \frac{4}{5}, \frac{1}{5}$ oe		B1 correct probabilities for spinner B
(b)	$\frac{2}{5} \times \frac{4}{5} = \frac{8}{25} \text{ or } \frac{2}{5} \times \frac{1}{5} = \frac{2}{25} \text{ or } \frac{2}{5} \times \frac{1}{5} = \frac{2}{25} \text{ or } \frac{3}{5} \times \frac{4}{5} = \frac{12}{25} \text{ or } \frac{3}{5} \times \frac{1}{5} = \frac{3}{25} \text{ oe } \frac{3}{25} \text{ oe } \frac{3}{25} = \frac{3}{25} \text{ oe } \frac{3}{25} \text{ oe } \frac{3}{25} = \frac{3}{25} \text{ oe } \frac{3}{25} $		3	M1 ft from (a) provided 0 < probability <1
	$1 - \frac{8}{25}$ or $\frac{2}{25} + \frac{12}{25} + \frac{3}{25}$ or $\frac{2}{25} + \frac{3}{5}$ oe			M1 ft from (a) for a complete method
		$\frac{17}{25}$		A1 oe
				Total 5 marks
		•		
9			2	M1 for any correct partial factorisation with at least 2 factors, one of which must be a letter or the correct common factor with no more than 1 error inside the bracket
		$8m^2 g^3(2m+3g^2)$		A1

	Q		Working	Answ	er	Mark	Notes	
10	а				$4e^{10}$	2	B2	(B1 for $4e^k$ or ke^{10})
	b	A co	orrect first step eg				M1	or for $16y^p$ where $p \neq -4$
		$\frac{y^{-4}}{2^{-4}}$	or $\left(\frac{y^4}{16}\right)^{-1}$ or $\frac{y^{-4}}{0.0625}$ or $\left(\frac{2}{y}\right)^4$ or $\frac{16}{y^4}$ or $\left(\frac{1}{\frac{y}{2}}\right)^4$	or $\frac{1}{\left(\frac{y}{2}\right)^4}$				
					$16y^{-4}$	2	A1	
	с	eg1	$2 \times \frac{4x-2}{3} - 12 \times \frac{5-3x}{4} = 12 \times 6$ or				M1	for clear intention to multiply all terms by 12 or a multiple of 12
		eg 4	$(4x-2) - 3(5-3x) = 12 \times 6$ or					or to express LHS as two fractions
		eg -	$\frac{4(4x-2)}{12} - \frac{3(5-3x)}{12} (=6)$ or					over 12 or a multiple of 12 or as a single fraction with a denominator of 12 or a multiple of 12
		eg -	$\frac{4(4x-2)-3(5-3x)}{12}(=6)$ oe					(if expanded numerator, allow one sign error)
		eg 1	$6x - 8 - 15 + 9x = 6 \times 12$				M1	expanding brackets and multiplying both sides by denominator with no more than
							.	one sign error
		eg 1	6x + 9x = 72 + 8 + 15				M1	for correct rearrangement of a correct equation with terms in <i>x</i> isolated
					3.8	4	A1	oe, award full marks for a correct answer if at least M1 scored
								Total 8 marks

Practice Tests Set 14 -	 Paper 1H mark scheme. 	performance data an	d suaaested (arade boundaries

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

11	xy + 3y = 5 - 2x oe			M1	multiplying both sides by $(x + 3)$ and expanding the brackets correctly
	e.g. $xy + 2x = 5 - 3y$			M1	ft dep on 2 terms on left and $(5 - 2x)$ on right, for collecting all x terms on one side and non-x terms on the other side
	$\operatorname{eg} x(y+2) = 5 - 3y$			M1	ft, dep on 2 terms in <i>x</i> , for factorising for <i>x</i>
		$x = \frac{5 - 3y}{2 + y}$	4	A1	oe allow $\frac{5-3y}{2+y}$ as answer so long
					as previously seen $x = \frac{5-3y}{2+y}$
					Total 4 marks

Q	Working	Answer		Μ	lark	Notes
12	$F = \frac{k}{v^2}$ or $Fv^2 = k$ oe				3	M1 (NB. Not for $F = \frac{1}{v^2}$) Constant of proportionality must be a symbol such as k M2 for $6.5 = \frac{k}{4^2}$ oe
	$6.5 = \frac{k}{4^2}$ or $k = 6.5 \times 4^2$ or $k = 104$					M1 For substitution of <i>F</i> and <i>v</i> into a correct formula
		$F = \frac{1}{2}$	$\frac{04}{v^2}$			A1 Award 3 marks if $F = \frac{k}{v^2}$ is on the
						answer line and the value of k = 104 is found
						Total 3 marks
13	e.g. $x = 0.6\dot{8}\dot{1}$ and $100x = 68.\dot{1}\dot{8}$ or $10x = 6.\dot{8}\dot{1}$ and $1000x = 681.\dot{8}\dot{1}$				M1	e.g. two decimals that when subtracted give a finite decimal (must show understanding of recurring figures by 'dot' or at least 2 lots of 18 or 81 after the decimal point). Algebra required, use of any letter.
	$99x = 67.5, x = \frac{67.5}{99} = \frac{15}{22}$		show	2	A1	dep for completing the 'show that' arriving at given answer from correct working.
	or $990x = 675, x = \frac{675}{990} = \frac{15}{22}$ oe					
						Total 2 marks

Q		Working	Answer	Mark		Notes
14	(a)(i)		122	1	B1	
	(a)(ii)		reason	1	B1	(dep on a correct answer or a correct method seen for (i)) <u>Opposite angles</u> in a <u>cyclic</u> <u>quad</u> rilateral sum to 180°
	(b)	$360 - 2 \times 58 \text{ or } 2 \times 122'$		2	M1	ft from (a)
			244		A1	
						Total 4 marks

15	$\frac{6}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}} \text{ or}$ $\frac{6}{3-\sqrt{7}} \times \frac{-3-\sqrt{7}}{-3-\sqrt{7}}$			M1	
	$\frac{\frac{6(3+\sqrt{7})}{3^2-7} \text{ or } \frac{6(3+\sqrt{7})}{2} \text{ or }}{\frac{6(-3-\sqrt{7})}{-3^2+7} \text{ or } \frac{6(-3-\sqrt{7})}{-2}}$			M1	(numerator may be expanded or denominator may be 4 terms which need to be all correct)
		$9 + 3\sqrt{7}$	3	A1	dep on M2
					for $9 + 3\sqrt{7}$ or $3(3 + \sqrt{7})$ from
					correct working
					Total 3 marks

	Q Working		ing	Answer	Mark	c Notes			
1	6 $3y(2y + x = \frac{8+3y}{3y} + \frac{3xy-3}{3xy-3}$ oe	1) $-y^2 = 8$ or $\frac{y^2}{y} \rightarrow \frac{8+y^2}{3y} - 2y = 1$ or $-y^2 = 8$ $3y \times 2y = 3y \times 1$	$3x\left(\frac{x-1}{2}\right) - \left(\frac{x-1}{2}\right)^2 =$ oe	8		M1	correct first step eg substitution by eg $x = 1 + 2y$ or $y = \frac{x-1}{2}$ to get an equation in a single variable or writing 2 nd equation with x the subject and substituting into 1 st or multiplying 2 nd equation by 3y and subtracting from 1 st oe		
	eg 5 y^2 +	-3y - 8 (= 0)	eg $5x^2 - 4x - 33 (= 0)$			A1	for a correct simplified quadratic		
	$\frac{(5y+8)}{-3\pm\sqrt{3}}$	$\frac{(y-1) (= 0) \text{ or}}{b^2 - 4 \times 5 \times (-8)}$ 2×5	$\frac{(5x+11)(x-3) (= 0) c}{4 \pm \sqrt{(-4)^2 - 4 \times 5 \times (-3)^2}}$	<u>or</u> <u>3)</u>		M1ft	dep on M1 for solving their 3 term quadratic equation using any correc method (allow one sign error and some simplification – allow as far as $\frac{-3\pm\sqrt{9+160}}{10}$) or if factorising, allow brackets which expanded give 2 out of 3 terms correct)		
	$y = -\frac{8}{5}$	and $y = 1$ (both)	$x = -\frac{11}{5}$ and $x = 3$ (bo	oth)		A1	dep on first M1		
			·	$x = -\frac{11}{5}, y = -$ x = 3, y = 1	$\frac{8}{5}$ 5	A1	oe dep on first M1 Must be paired correctly		
							Total 5 mark		

Q			Working			Answer Mark			k Notes			
	17	3 ⁴	$\frac{3^x}{3^x}$ or $81 - \frac{3^x}{3^x}$	$9^2 = \frac{3^x}{2}$ or $81 = \frac{9^2}{2}$	$(0.5)^{x}$			M1	replac	cing 81 with 3^4 or 9^{3x} with $(3^2)^{3x}$ (or 3^{6x})		
		5 –	9^{3x} $(3^2)^{3x}$	9^{3x} 9 ^{3x}	9 ^{3x}				or rep (in an	blacing 81 with 9^2 or 3^4 with $(9^{0.5})^4$ equation)		
		eg 4 -	+ 6x = x or 4 = x - 2(3x) oe	eg 2 = $0.5x - 3x$ oe				M1	a cor	rect equation using powers		
						-0.8	3	A1	oe, de	ep on at least M1		
										Total 3 marks		
	18	$\overrightarrow{AB} =$	$\mathbf{F} - \mathbf{a} + \mathbf{b}$ or $\overrightarrow{BA} = \mathbf{a} - \mathbf{b}$						M1	Correct diagram (condone missing vector labels or arrows – with <i>C</i> on line segment <i>OA</i> and <i>D</i> on line segment <i>OB</i>) OR for finding \overrightarrow{AB} or \overrightarrow{BA} - may be seen as part of later working		
		$\overrightarrow{CD} = \overrightarrow{DC}$	$= \frac{1}{3}(-\mathbf{a} + \mathbf{b}) \text{ or}$ $= \frac{1}{3}(\mathbf{a} - \mathbf{b})oe$						M1	Method to find \overrightarrow{CD} or \overrightarrow{DC}		
				Correct ve including p	ctors ar arallel	nd conclusic and <u>trapezic</u>	on 1 <u>m</u>	3	A1	eg $\overrightarrow{AB}(AB)$ and $\overrightarrow{CD}(CD)$ are parallel therefore <i>ABDC</i> is a trapezium		
										Total 3 marks		

Q	Working	Answer	Mark		Notes	
			<u>. </u>			
19	$(3x+2)(2x-4) < 3x+27$ oe eg $6x^2 - 8x - 8 < 3x + 2$.7		M1	condone incorrect symbol	
	eg $6x^2 - 11x - 35 < 0$			M1	expanding and rearranging to get a correct 3 term quadratic, condone incorrect symbol	
	$(2x-7)(3x+5) (= 0)$ or $\frac{11 \pm \sqrt{(-11)^2 - 4 \times 6 \times (-35)}}{2 \times 6}$			M1	first step to find the critical values dep on M1 for solving their 3 term quadrati- using any correct method (allow one sign error and some simplification – allow as far as the equivalent of $\frac{11\pm\sqrt{121+840}}{12}$) or if factorising, allow brackets which expanded give 2 out of terms correct)	c V 3
	$-\frac{5}{3}, \frac{7}{2}$			A1	oe the positive critical value only or both critical values (if both they must b correct)	e
		$2 < x < \frac{7}{2}$	5	A1	accept $2 \le x < \frac{7}{2}$ may be seen as two separate inequalities $x > 2$ ($x \le 2$) and $< \frac{7}{2}$	x
					Total 5 mark	ζS

(5	Working	Answer	Mark	Not	es
			-			
20	$\left(\frac{9x}{3x^2-3}\right)$	$\frac{x^{2}-4}{13x-10} = \frac{(3x+2)(3x-2)}{(3x+2)(x-5)}$		М	1 for either (3x+2)(3x-2) or (3x+2)(x-5)	M2 for $\frac{9x^2 - 4}{(9x^2 - 4)(x - 5)} =$
	$\left(\frac{9x}{3x^2-1}\right)$	$\frac{x^2 - 4}{13x - 10} = \frac{(3x + 2)(3x - 2)}{(3x + 2)(x - 5)}$		М	1 for (3x+2)(3x-2) and (3x+2)(x-5)	$\frac{1}{(x-5)}$
	E.g. of $a (3x-2)$ (3x-2) $9x^4 - 54$ (3x+2) (3x-2) (x-5)(3x-2)	denominators $(3x^2 - 13x - 10)(x - 1)$ or (3x + 2)(x - 5)(x - 1) or $4x^3 + 41x^2 + 24x - 20$ or $(x - 5)(x - 1)$ or $3x^3 - 16x^2 + 3x + 10$ or $(x - 5)(x - 1)$ or $3x^3 - 20x^2 + 27x - 10$ or $x - 1)$ or $x^2 - 6x + 5$		М	 (indep) ft their fract correct common der fractions with algeb NB: fractions need 	ions for use of a nominator for 2 praic denominators not be simplified
	$\frac{x-1-7}{(x-5)}$ $\frac{x-1-7}{x^2-6}$	$\frac{x(x-5)}{(x-1)} \text{ or } \frac{x-1-7x+35}{(x-5)(x-1)} \text{ or }$ $\frac{7(x-5)}{5x+5} \text{ or } \frac{x-1-7x+35}{x^2-6x+5} \text{ oe }$		М	1 for a correct fraction quadratic denominn not be expanded wh correct answer	on with a correct ator – may or may nich leads to a
	$\frac{2(17-3x)}{(x-5)(x-1)}$		5 A	$\frac{1}{1} \operatorname{accept} \frac{34-6x}{(x-5)(x-1)}$ is expanded then it	oe; if denominator must be correct	
						Total 5 marks

Q Working			Aı	iswer	•	Mark	Notes			
21 a	$5 - (x \pm q)^2 + 9$ oe or $p - (x - 3)^2$				M1	may be se	en in working eg –[$(x-3)^2 - 9 - 5$]			
	oe									
						or				
	or									
	$p - q^2 + 2qx - x^2$ and one of					expanding	$g p - (x - q)^2$ correctly and equating one of			
	$2q = 6$ or $p - q^2 = 5$					the coeffic	cient of x or the constant term			
		14 - (x - x)	$(-3)^2$	2	A1	fully corre	ect			
						SCB1 for	$(x-3)^2 - 14$			
b	e.g. $(x-3)^2 = 14 - y$				M1	correct ste	eps to isolate their bracket			
						ft from (a	a) dep on expression in form $\pm p \pm (x-q)^2$			
	$[or (y-3)^2 = 14 - x]$									
	$x = 3 \pm \sqrt{14 - \gamma}$				M1	complete	method to find y in terms of x or x in terms			
						of y. Conc	done + for \pm			
	$[0r y = 3 \pm \sqrt{14} - x]$					ft from (a) dep on expression in form $\pm p \pm (x-q)^2$				
	$(f^{-1}(x) =) 3 - \sqrt{14 - x}$				M1	for the con	rrect inverse			
					M1	method to solve $0 < 3 - \sqrt{14 - x}$ or a lower bound of				
						5 clearly s	shown, eg $x > 5$ as part of the answer			
		$5 < x \leq$	14	5	A1	cao				
							Total 7 marks			

	·											
		Mean	Max	Mean	Edexce	l average	s: score	s of canc	lidates w	ho achiev	ved grade:	
Qn	Skill tested	score	score	%	ALL	9	8	7	6	5	4	3
1	Linear equations	12.65	3	88	2.65	2.99	2.93	2.88	2.74	2.58	2.29	1.63
2	Graphs	2.42	3	81	2.42	2.94	2.85	2.76	2.60	2.34	1.76	0.70
3	Use of symbols	3.26	4	82	3.26	3.94	3.83	3.63	3.26	2.96	2.41	1.84
4	Simultaneous linear equations	2.89	4	72	2.89	3.94	3.76	3.40	3.06	2.27	1.35	0.49
5	Inequalities	1.53	2	77	1.53	1.92	1.83	1.70	1.58	1.42	1.05	0.66
6	Graphs	1.19	2	60	1.19	1.92	1.82	1.55	1.06	0.52	0.24	0.05
7	Set language and notation	2.04	3	68	2.04	2.65	2.44	2.28	2.01	1.69	1.40	1.01
8	Probability	3.17	5	63	3.17	4.69	4.25	3.64	3.02	2.15	1.47	0.78
9	Algebraic manipulation	1.16	2	58	1.16	1.76	1.56	1.31	1.09	0.81	0.48	0.12
10	Linear equations	4.59	8	57	4.59	7.43	6.34	5.12	3.62	2.92	1.67	0.77
11	Expressions and formulae	2.09	4	52	2.09	3.76	3.25	2.41	1.40	0.88	0.25	0.12
12	Ratio and proportion	1.56	3	52	1.56	2.79	2.31	1.78	1.22	0.67	0.29	0.00
13	Decimals	0.80	2	40	0.80	1.52	1.23	0.85	0.52	0.27	0.12	0.02
14	Circle properties	1.55	4	39	1.55	2.87	2.19	1.68	1.10	0.67	0.38	0.23
15	Powers and roots	1.19	3	40	1.19	2.65	1.89	1.11	0.49	0.28	0.11	0.02
16	Quadratic equations	1.73	5	35	1.73	4.16	2.43	1.42	0.74	0.32	0.11	0.06
17	Powers and roots	1.03	3	34	1.03	2.55	1.48	0.82	0.31	0.18	0.04	0.01
18	Vectors	0.94	3	31	0.94	2.21	1.34	0.77	0.47	0.20	0.08	0.06
19	Inequalities	1.37	5	27	1.37	3.11	1.93	1.12	0.81	0.35	0.13	0.03
20	Algebraic manipulation	1.41	5	28	1.41	3.54	2.09	1.02	0.47	0.24	0.10	0.01
21	Function notation	0.81	7	12	0.81	2.57	0.91	0.35	0.14	0.04	0.01	0.00
	TOTAL	49.38	80	62	39.38	74.91	60.66	48.60	37.71	28.76	19.74	11.61

Answer

Mark

Notes

Practice Tests Set 14 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Suggested grade boundaries

Q

Grade	9	8	7	6	5	4	3
Mark	68	55	43	33	25	16	9